Five Factors of Soil Formation

Jenny (1941) addressed the question of which environmental factors are responsible for the soils we have today. Recognizing these factors is extremely useful for field scientists when looking over a landscape and predicting the soil types that are found upon it. These factors include the following:

  1. Parent Material – What was there before soil formation began?(Possibilities include mud deposited by a river, sand deposited by ocean, rock that weathers and breaks down, etc.);
  2. Organisms – usually refers to vegetation and microorganisms, but includes the complete biological community;
  3. Climate– on both large and small scales;
  4. Relief, or landscape position;
  5. Time.

How do these factors determine the types of soils found in the ACE Basin study area?

Parent Material

Parent materials in the ACE Basin study area were mostly deposited by the ocean or rivers and streams. In some cases these sediments were reworked by wind. The principle to remember is that fluids with higher energy (fast-moving and/or large waves) can hold larger particles than fluids with lower energy. Muds high in silt and clay were deposited by slow-moving or still air and water, while the fluids that deposited sandy sediments were moving fast enough to retain suspended silts and clays. (Fluids, in this context, include both liquids and gases.) Sandy, non-alluvial soils in the ACE Basin study area were likely once beach and dune deposits. Finer textured soils were probably once marshes and other backwater areas that were protected from strong ocean waves and currents.

Soils of alluvial origin (flood plain soils) also vary in texture, from sands to clays. When a stream of water is concentrated through a small channel, its flow rate is more rapid than when the same amount of water on the same slope is spread out over a wider area. (This is the reason sluices were constructed for old water-powered mills.) River water confined within the river’s banks moves at a higher velocity than when the river floods and its waters spread over the flood plain. When a river floods and overflows onto its flood plain, its velocity immediately decreases and it starts dropping its sediment load. The larger, heavier sand particles drop out first, near the banks. In some cases, a natural sandy levee forms on either bank of the river. Finer and finer particles are dropped the farther out the floodwaters’ reach. Floodwaters often create ponds on the outer margins of flood plains. Clay-sized particles settle out in these areas.

The deposition of soil parent materials on flood plains is further complicated because the stream meanders back and forth. Sandy stream channel sediments may be buried by the finer sediments of ponded backwaters and oxbow lakes. Finer sediments in the flood plain may also be buried or eroded away by a meandering channel. All these scenarios result in differences in the soils that subsequently form on these sites.

Other important parent materials in the ACE Basin study area are those high in calcium carbonates. A plethora of marine organisms leaves some sort of calcareous remains that have a profound effect on soils that form in sediments that include these materials. The presence of calcium carbonate in soil drastically changes the soil chemistry, and thereby the chemical processes that occur, and the community of organisms that colonize the soil. Dwarf palmetto (Sabal minor) is a well-known indicator species used by soil scientists to identify calcareous soils in the field, since this species requires soils with a near neutral to alkaline pH.

ALSO READ  Functions of the Soil


Organisms affect the type of organic matter that is added to the soil, the rate at which the organic matter is decomposed, the part of the soil to which the organic matter is added and translocated, and the types of chemical reactions that occur in the soil.

One of the most notable effects that soil organisms have on soils in the ACE Basin study area is on the amount of organic matter that is present. In wetland soils, SOM tends to build up because the anaerobic soil bacteria are less efficient than their aerobic cousins at decomposing it. (See related section: Decomposers.)


Climate affects soils by governing the rate at which chemical reactions can take place and the amount of percolating water that translocates materials from one part of the soil to another. The climate and its effects on soil change on a regional basis in areas of low relief like the ACE Basin study area and the rest of the Southeastern Coastal Plain. Differences in soil types from one part of the Basin to another are not attributed to climatic change. The whole area has a warm, moist climate most of the year, which is conducive to relatively high chemical reaction rates responsible for chemical weathering and biological activity. This is all conducive to relatively rapid rates of soil formation. (See related section:Climatology.)


Local relief is the environmental factor that has the greatest effect on the soils of the ACE Basin study area. Changes in elevation of only a few feet produce major changes on soil properties in this region, all attributable to the topography ‘s effect on soil water.

Simply stated, water runs downhill. When water drains from the soil on local topographic highs, it drains into the low areas on the landscape. Soils in low-lying areas are saturated closer to the surface for longer periods of time than soils on higher ground.

The organisms living on or in these wetter soils must have ways of adapting to the limited availability of soil air. Vegetation has hydrophytic characteristics, and soil bacteria are either anaerobes or facultative anaerobes.

On the other hand, organisms living on the topographic high points must be adapted to xeric conditions. Often, the origins of the landforms making up these topographic highs are old, sandy beach and dune ridges. Soils that form there drain quickly and retain very little water. These two different soil conditions affect both the soil chemistry and the amounts of organic matter added to the soil each year.

ALSO READ  How to Select a Good Watermelon


All pedogenic (soil forming) processes occur over time. Young soils show only minimal profile development—often only an A horizon overlying a C horizon. As the soil matures with time, additional subsurface horizons form.

The development of soil through time can be easily observed in the Southern Coastal Plain. The youngest landforms and soils are closest to the ocean gradually increasing in age inland. While the soils of the ACE Basin study area are all fairly young, this increase in soil development is still evident.

The original intent of Jenny’s factors of soil formation model was to develop a numerical equation that used information on each factor to determine the characteristics of the resultant soil. It is unlikely that this will come to pass. Obviously, these five factors are not always independent of each other. In addition, soil is a highly complex system that is only partly understood. However, Jenny’s model has proved invaluable to field soil scientists and landscape ecologists the world over.

Generalized Theory of Soil Genesis

Roy W. Simonson’s conceptual model of soil genesis takes a different approach. Instead of concentrating on the external factors that influence the type of soil that forms in a given location, he considers the pedogenic processes that occurred within the soil body.

First, he divides soil formation into two steps:

  1. the accumulation of parent materials, and
  2. the differentiation of horizons in the profile.

Horizon differentiation is divided into four basic categories of changes:

  1. additions,
  2. removals,
  3. transfers,
  4. transformations.

Simonson (1959) uses the changes that organic matter undergoes in soil as an example. Organic matter is added to soils as plant and animal remains, often at the surface. The action of organisms removes some of this SOM as it decays, usually in gaseous forms that escape to the atmosphere. Some SOM may leach with percolating rainwater to deeper horizons. The processes of decay also transform the organic matter into different organic substances. Similar examples can be made with mineral substances.

Simonson (1959) further postulates that all the changes that occur in our many different soils occur in ALL soils, only at different rates. The rate of these changes is controlled by environmental factors, such as those outlined by Jenny (1941). The ultimate result of the pedogenic changes is the soil that exists today, and the differences among soils are due to the varying rates of all these processes.

Stages of Soil Formation

All soil formation begins with the accumulation of parent material. The next step is the buildup of organic materials at the surface. Pioneer species (most often grasses and alga in this area) live and die, and organic matter begins to build up on the surface of the material and also beneath the surface in the rooting zone.

ALSO READ  Snail Farming for Beginners (List of Snail Feed in Nigeria)

The A horizon starts to form once enough organic matter has been transformed by soil biota into humic materials. The humic materials coat the soil particles, coloring them brown and black. The formation of a recognizable A horizon takes decades or, in some cases, centuries.

The B horizon begins to form as dissolved and suspended materials are carried downward to greater depths with percolating rainwater. These materials include humic substances, suspended clays, salts, and metals, including iron and aluminum. It is likely that the largely insoluble iron and aluminum cations and oxides move in complex with dissolved organic material (chelation), and also in complex with suspended clay minerals.

The A horizon continues to increase in thickness, and the B horizon continues to develop. The A horizon will increase in thickness and SOM content, until it reaches a steady state in which the rate of fresh organic matter additions equals the losses by decay, illuviation, and erosion. This steady state is affected by certain environmental changes, including climatic change and vegetational succession (or cultivation). The B horizon will continue to receive illuviated material as it is formed in the A horizon, or sometimes as it is deposited on the surface (especially wind-blown clays).

The E horizon forms as the top of B horizon moves deeper into the soil. In some forested areas, such as the Southeast region of the United States, the movement of illuvial materials occurs at a faster rate than the illuvial materials are formed (largely clays and organic matter). This results in a “gap” between the A horizon and the B horizon. The E horizon is usually the same texture as the A horizon, and the soil particles are largely stripped of staining agents, such as organic matter and metal oxides. These materials have elluviated from the E into the B horizon.

Minerals continue to weather. Clays in B horizon weather to less active minerals (kaolinite).

“Bases” are leached from soil. Certain cations are referred to as acids or bases in soil science, even though they do not fit any chemical definition of the term. The acidic cations, including aluminum and iron cations, are so called because their presence in the soil tends to decrease pH. (The reactions responsible for this will not be explained here.) The presence of the basic cations in large amounts usually coincides with neutral to high pH soil systems. These bases are often plant macro-nutrients, like calcium, potassium, and magnesium. The loss of basic cations results in low fertility soils.

Silicate clay minerals completely break down into iron and aluminum oxides. Soil is extremely infertile. This occurs in tropical climates. While some of these metal oxide clays exist in South Carolina soils, they do not dominate.

Source: webapp